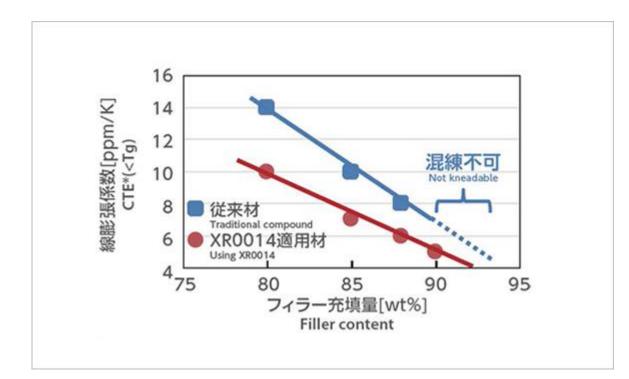
High heat resistant thermosetting resins: Original epoxide, High heat resistance, Low viscosity, Filler high filling

Characteristics

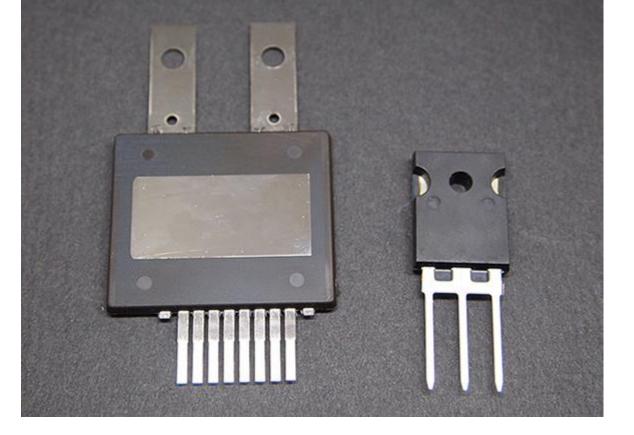
- High heat resistance due to original epoxide
- When the temperature is raised, it becomes liquid and has low viscosity.
- High filling of filler due to low viscosity
- Low coefficient of thermal expansion and high thermal conductivity due to high filling of filler

Sample of high heat resistant thermosetting resin

Physical property comparison with traditional epoxy resin


	Traditional resin	XR0004	XR0016	XR0014	XR0020
Main resin (Epoxide)	Biphenyl etc.	ENEOS resin [Low viscosity]	ENEOS resin [High Tough]	ENEOS resin [Low Temp. cure]	ENEOS resin [Low Temp. cure2]
Hardner	Phenol				
Property					
Viscosity@100degC [Pa•sec]	>5	0.3	0.8	0.8	0.9
F. Strength [*] [MPa]	150	124	155	140	138
F. Modulus [*] [MPa]	3000	4820	3800	4400	4060
Tg(175°C5h)[°C]	<200	-	-	190	210
Tg(220°C5h)[°C]	<220	240	220	240	250

Application: Thermosetting compound


Low CTE & High heat resistant compound

	Traditional compound	Prototype#1	Prototype#2	
Main resin (Epoxide)	Traditional resins	XR0014	XR0020	
Hardener	Traditional resins	XR0014		
Filler type	Spherical silica	Spherical silica	Spherical silica	
Filler content[wt%]	85	85	85	
Property				
Spiral flow[cm]	135	150	140	
Gelation time[sec]	40	45	40	
Tg[°C]	133	190	210	

* Post cure condition:175°C3min \rightarrow 175°C5h

Relationship between filler filling amount and CTE

time as traditional compound.

The low CTE compound is used as an encapsulant that has both high heat resistance and low CTE.

Semiconductor encapsulant

High thermal conductivity compound

	Traditional compound	Prototype#3
Filler content[%]	Alumina etc:85	Alumina etc:≦90
Binder	Traditional resin	XR0014
Tg[°C]	<200	240
F.strength[MPa]	120	100
F.modulus[MPa]	30000	45000
Thermal conductivity[W/m·K]	4.5	9.0

* Post cure condition: Traditional compound: $175^{\circ}C3min \rightarrow 175^{\circ}C5h$, Prototype#3: $175^{\circ}C3min \rightarrow 220^{\circ}C5h$

Low viscosity allows high filling of heat conductive fillers.

High thermal conductivity compound achieves 9W/ mk when it is highly filled with alumina etc.